3.11.72 \(\int \frac {(2-5 x) x^{13/2}}{(2+5 x+3 x^2)^{5/2}} \, dx\) [1072]

Optimal. Leaf size=256 \[ \frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {1521056 \sqrt {x} (2+3 x)}{76545 \sqrt {2+5 x+3 x^2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {211144 \sqrt {x} \sqrt {2+5 x+3 x^2}}{5103}-\frac {167336 x^{3/2} \sqrt {2+5 x+3 x^2}}{2835}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}+\frac {1521056 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{76545 \sqrt {2+5 x+3 x^2}}-\frac {211144 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{5103 \sqrt {2+5 x+3 x^2}} \]

[Out]

2/9*x^(11/2)*(74+95*x)/(3*x^2+5*x+2)^(3/2)-4/27*x^(7/2)*(1484+1685*x)/(3*x^2+5*x+2)^(1/2)-1521056/76545*(2+3*x
)*x^(1/2)/(3*x^2+5*x+2)^(1/2)+1521056/76545*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticE(x^(1/2)/(1+x)^(1/2),1/2*I*2^
(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)-211144/5103*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticF(x^(
1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)-167336/2835*x^(3/2)*(3*x^2+5
*x+2)^(1/2)+45820/567*x^(5/2)*(3*x^2+5*x+2)^(1/2)+211144/5103*x^(1/2)*(3*x^2+5*x+2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 256, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {832, 846, 853, 1203, 1114, 1150} \begin {gather*} -\frac {211144 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} F\left (\text {ArcTan}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{5103 \sqrt {3 x^2+5 x+2}}+\frac {1521056 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\text {ArcTan}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{76545 \sqrt {3 x^2+5 x+2}}+\frac {211144 \sqrt {3 x^2+5 x+2} \sqrt {x}}{5103}-\frac {1521056 (3 x+2) \sqrt {x}}{76545 \sqrt {3 x^2+5 x+2}}+\frac {2 (95 x+74) x^{11/2}}{9 \left (3 x^2+5 x+2\right )^{3/2}}-\frac {4 (1685 x+1484) x^{7/2}}{27 \sqrt {3 x^2+5 x+2}}+\frac {45820}{567} \sqrt {3 x^2+5 x+2} x^{5/2}-\frac {167336 \sqrt {3 x^2+5 x+2} x^{3/2}}{2835} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((2 - 5*x)*x^(13/2))/(2 + 5*x + 3*x^2)^(5/2),x]

[Out]

(2*x^(11/2)*(74 + 95*x))/(9*(2 + 5*x + 3*x^2)^(3/2)) - (1521056*Sqrt[x]*(2 + 3*x))/(76545*Sqrt[2 + 5*x + 3*x^2
]) - (4*x^(7/2)*(1484 + 1685*x))/(27*Sqrt[2 + 5*x + 3*x^2]) + (211144*Sqrt[x]*Sqrt[2 + 5*x + 3*x^2])/5103 - (1
67336*x^(3/2)*Sqrt[2 + 5*x + 3*x^2])/2835 + (45820*x^(5/2)*Sqrt[2 + 5*x + 3*x^2])/567 + (1521056*Sqrt[2]*(1 +
x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqrt[x]], -1/2])/(76545*Sqrt[2 + 5*x + 3*x^2]) - (211144*Sqrt[2]*(
1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcTan[Sqrt[x]], -1/2])/(5103*Sqrt[2 + 5*x + 3*x^2])

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m - 1))*(a + b*x + c*x^2)^(p + 1)*((2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*
g - c*(b*e*f + b*d*g + 2*a*e*g))*x)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d
+ e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2
*a*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m
+ 2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &
& RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 846

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
 - 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
 + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
 b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 853

Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2, Subst[Int[(f +
 g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1114

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*a + (b - q
)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + (b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*Elli
pticF[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^
2 - 4*a*c, 0]

Rule 1150

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[x*((b -
q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (
b + q)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(
q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1203

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {(2-5 x) x^{13/2}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}+\frac {2}{9} \int \frac {(-407-340 x) x^{9/2}}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {4}{27} \int \frac {x^{5/2} \left (5194+\frac {11455 x}{2}\right )}{\sqrt {2+5 x+3 x^2}} \, dx\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}+\frac {8}{567} \int \frac {\left (-\frac {57275}{2}-\frac {62751 x}{2}\right ) x^{3/2}}{\sqrt {2+5 x+3 x^2}} \, dx\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}-\frac {167336 x^{3/2} \sqrt {2+5 x+3 x^2}}{2835}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}+\frac {16 \int \frac {\sqrt {x} \left (\frac {188253}{2}+\frac {395895 x}{4}\right )}{\sqrt {2+5 x+3 x^2}} \, dx}{8505}\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {211144 \sqrt {x} \sqrt {2+5 x+3 x^2}}{5103}-\frac {167336 x^{3/2} \sqrt {2+5 x+3 x^2}}{2835}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}+\frac {32 \int \frac {-\frac {395895}{4}-\frac {142599 x}{2}}{\sqrt {x} \sqrt {2+5 x+3 x^2}} \, dx}{76545}\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {211144 \sqrt {x} \sqrt {2+5 x+3 x^2}}{5103}-\frac {167336 x^{3/2} \sqrt {2+5 x+3 x^2}}{2835}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}+\frac {64 \text {Subst}\left (\int \frac {-\frac {395895}{4}-\frac {142599 x^2}{2}}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )}{76545}\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {211144 \sqrt {x} \sqrt {2+5 x+3 x^2}}{5103}-\frac {167336 x^{3/2} \sqrt {2+5 x+3 x^2}}{2835}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}-\frac {1521056 \text {Subst}\left (\int \frac {x^2}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )}{25515}-\frac {422288 \text {Subst}\left (\int \frac {1}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )}{5103}\\ &=\frac {2 x^{11/2} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {1521056 \sqrt {x} (2+3 x)}{76545 \sqrt {2+5 x+3 x^2}}-\frac {4 x^{7/2} (1484+1685 x)}{27 \sqrt {2+5 x+3 x^2}}+\frac {211144 \sqrt {x} \sqrt {2+5 x+3 x^2}}{5103}-\frac {167336 x^{3/2} \sqrt {2+5 x+3 x^2}}{2835}+\frac {45820}{567} x^{5/2} \sqrt {2+5 x+3 x^2}+\frac {1521056 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{76545 \sqrt {2+5 x+3 x^2}}-\frac {211144 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{5103 \sqrt {2+5 x+3 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 20.22, size = 187, normalized size = 0.73 \begin {gather*} \frac {-2 \left (3042112+8876240 x+5504080 x^2-2967300 x^3-2106756 x^4+262710 x^5-70956 x^6+18225 x^7\right )-1521056 i \sqrt {2+\frac {2}{x}} \sqrt {3+\frac {2}{x}} x^{3/2} \left (2+5 x+3 x^2\right ) E\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )-1646104 i \sqrt {2+\frac {2}{x}} \sqrt {3+\frac {2}{x}} x^{3/2} \left (2+5 x+3 x^2\right ) F\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )}{76545 \sqrt {x} \left (2+5 x+3 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((2 - 5*x)*x^(13/2))/(2 + 5*x + 3*x^2)^(5/2),x]

[Out]

(-2*(3042112 + 8876240*x + 5504080*x^2 - 2967300*x^3 - 2106756*x^4 + 262710*x^5 - 70956*x^6 + 18225*x^7) - (15
21056*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(3/2)*(2 + 5*x + 3*x^2)*EllipticE[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2] -
(1646104*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(3/2)*(2 + 5*x + 3*x^2)*EllipticF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2]
)/(76545*Sqrt[x]*(2 + 5*x + 3*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.83, size = 312, normalized size = 1.22

method result size
elliptic \(\frac {\sqrt {x \left (3 x^{2}+5 x +2\right )}\, \left (\frac {\left (-\frac {22460}{19683}-\frac {32666 x}{19683}\right ) \sqrt {3 x^{3}+5 x^{2}+2 x}}{\left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )^{2}}-\frac {2 x \left (-\frac {100085}{6561}-\frac {33460 x}{2187}\right ) \sqrt {3}}{\sqrt {x \left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )}}-\frac {10 x^{2} \sqrt {3 x^{3}+5 x^{2}+2 x}}{189}+\frac {1084 x \sqrt {3 x^{3}+5 x^{2}+2 x}}{2835}-\frac {9286 \sqrt {3 x^{3}+5 x^{2}+2 x}}{5103}-\frac {211144 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {-6 x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{15309 \sqrt {3 x^{3}+5 x^{2}+2 x}}-\frac {760528 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {-6 x}\, \left (\frac {\EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-\EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{76545 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right )}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(272\)
default \(-\frac {2 \left (1328364 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{2}+1140792 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{2}+54675 x^{7}+2213940 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x +1901320 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x -212868 x^{6}+885576 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+760528 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+788130 x^{5}-26854524 x^{4}-77349420 x^{3}-67906368 x^{2}-19002960 x \right ) \sqrt {3 x^{2}+5 x +2}}{229635 \sqrt {x}\, \left (2+3 x \right )^{2} \left (x +1\right )^{2}}\) \(312\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2-5*x)*x^(13/2)/(3*x^2+5*x+2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/229635*(1328364*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x^2+1
140792*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x^2+54675*x^7+221
3940*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x+1901320*(6*x+4)^(
1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x-212868*x^6+885576*(6*x+4)^(1/2)
*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))+760528*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^
(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))+788130*x^5-26854524*x^4-77349420*x^3-67906368*x^2-1900
2960*x)*(3*x^2+5*x+2)^(1/2)/x^(1/2)/(2+3*x)^2/(x+1)^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(13/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="maxima")

[Out]

-integrate((5*x - 2)*x^(13/2)/(3*x^2 + 5*x + 2)^(5/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.88, size = 137, normalized size = 0.54 \begin {gather*} -\frac {2 \, {\left (5698840 \, \sqrt {3} {\left (9 \, x^{4} + 30 \, x^{3} + 37 \, x^{2} + 20 \, x + 4\right )} {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right ) - 6844752 \, \sqrt {3} {\left (9 \, x^{4} + 30 \, x^{3} + 37 \, x^{2} + 20 \, x + 4\right )} {\rm weierstrassZeta}\left (\frac {28}{27}, \frac {80}{729}, {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right )\right ) + 27 \, {\left (6075 \, x^{6} - 23652 \, x^{5} + 87570 \, x^{4} - 2983836 \, x^{3} - 8594380 \, x^{2} - 7545152 \, x - 2111440\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} \sqrt {x}\right )}}{688905 \, {\left (9 \, x^{4} + 30 \, x^{3} + 37 \, x^{2} + 20 \, x + 4\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(13/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="fricas")

[Out]

-2/688905*(5698840*sqrt(3)*(9*x^4 + 30*x^3 + 37*x^2 + 20*x + 4)*weierstrassPInverse(28/27, 80/729, x + 5/9) -
6844752*sqrt(3)*(9*x^4 + 30*x^3 + 37*x^2 + 20*x + 4)*weierstrassZeta(28/27, 80/729, weierstrassPInverse(28/27,
 80/729, x + 5/9)) + 27*(6075*x^6 - 23652*x^5 + 87570*x^4 - 2983836*x^3 - 8594380*x^2 - 7545152*x - 2111440)*s
qrt(3*x^2 + 5*x + 2)*sqrt(x))/(9*x^4 + 30*x^3 + 37*x^2 + 20*x + 4)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x**(13/2)/(3*x**2+5*x+2)**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4496 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(13/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="giac")

[Out]

integrate(-(5*x - 2)*x^(13/2)/(3*x^2 + 5*x + 2)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} -\int \frac {x^{13/2}\,\left (5\,x-2\right )}{{\left (3\,x^2+5\,x+2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^(13/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(5/2),x)

[Out]

-int((x^(13/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(5/2), x)

________________________________________________________________________________________